Improving indexing of the (compacted) colored de Bruijn graph

Problem & Motivation K-mer based reference indexing

- Given a collection of reference sequences $\mathscr{R} = \{R_1, \dots, R_m\}$, where each R_i is a string over the DNA alphabet $\Sigma = \{A, C, G, T\}$
- We want an index \mathscr{I} over \mathscr{R} that can efficiently answer the following queries:
 - Membership: Does x appear in \Re ?
 - Count: How many times does x appear in \mathscr{R} ?
 - **Color:** In which references does x appear?
 - Locate: Where in \mathscr{R} does x appear?
- Applications : This type of index is useful for many foundational problems like read mapping/alignment/ lightweight alignment/pseudoalignment. Solving it quickly and in small space can help in bottleneck steps in taxonomic assignment, metagenomics, bulk and single-cell RNA-seq processing, etc.

Problem & Motivation More formally

- Want: Map from distinct k-mers to their reference positions (i.e. for k-mer x): $x \rightarrow L_x = \{(i, \{p_{ij}\}), x \in R_i\}$
- Where $\mathscr{R} = \{R_1, ..., R_m\}$ is a set of m references, and L_x is a list of pairs of reference id i, and a **set** of occurrences of k-mer x on R_i
- Queries:
 - Membership: Does x appear in \mathcal{R} ? Presence/absence in map
 - Count: How many times does x appear in \mathscr{R} ? Length of L_x in the index
 - Color: In which references does x appear? The set $\{i \mid x \in R_i\}$
 - Locate: Where in \mathscr{R} does $\stackrel{\circ}{x}$ appear?

The set $\{(i, \{p_{ij}\}) \mid x \in R_i\}$

Increasing power / specificity of query.

Problem & Motivation More formally

- Want: Map from distinct k-mers to their reference positions (i.e. for k-mer x): $x \to L_x = \{(i, \{p_{ii}\}), x \in R_i\}$
- Where $\mathscr{R} = \{R_1, \dots, R_m\}$ is a set of m references, and L_x is a list of pairs of reference id i, and a set of occurrences of k-mer x on R_i
- Queries: \bullet
 - Membership: Does x appear in \Re ? Presence/absence in map
 - Count: How many times does x appear in \Re ? Length of L_x in the index
 - **Color:** In which references does x appear? The set $\{i \mid x \in R_i\}$
 - Locate: Where in \mathscr{R} does x appear?

The set $\{(i, \{p_{ii}\}) \mid x \in R_i\}$

Will focus on this as the most powerful / difficult query

A general structure for k-mer indexing

- Many k-mer based indexes are indexes are indexing framework, $\mathscr{D} + L$:
 - deBGA [Liu et al. 2016]
 - Sequence Bloom Trees [Solomon et al. 2016]
 - kallisto [Bray et al. 2016]
 - BIGSI [Bradley et al. 2017]
 - Rainbowfish [Almodaresi et al. 2017]
 - Mantis [Pandey et al. 2018]
 - Pufferfish [Almodaresi et al. 2018]
 - SeqOthello [Yu et al. 2018]
 - COBS [Bingmann et al. 2019]
 - Reindeer [Marchet et al. 2020]
 - Raptor [Seiler et al. 2021]
 - Metagraph [Karasikov et al. 2022]
 - NIQKI [Agret et al. 2022]
 - Pufferfish2 [Fan et al. 2022]
 - etc.

Many k-mer based indexes are incarnations/adaptations of this general

Data structures based on *k*-mers for querying large collections of sequencing data sets

Camille Marchet¹, Christina Boucher², Simon J. Puglisi³, Paul Medvedev^{4,5,6}, Mikaël Salson¹ and Rayan Chikhi⁷

Problem & Motivation The fundamental query – mrp()

We want to find the position of any k-mer (e.g. x) in an index over **thousands or hundreds of thousands** of known reference sequences.

For example, when comparing observed sequences from the microbiome to known bacterial strains and species.

for reference indexing

The (compacted colored) de Bruijn graph

Using the (compacted colored) de Bruijn graph for indexing

Goal: compactly represent input reference sequences

- R_0 : AAATGAG
- R_1 : AAATGACG
- R_2 : CCTGACG
- R_3 : CCTGAG

Constructing a de Bruijn Graph

1.Break references into k-mer set (e.g. k=3) 2.Join k-mers with (k-1) overlap

Compacted de Bruijn Graph

Merge non-branching paths in dBG into *unitigs*

Key properties:

Unitigs *tile* reference sequences Any k-mer occurs *exactly once*, in *one unique* unitig U_i

de Bruijn Graph (dBG)

The reference index as a composition of 2 maps

k2tile(x) returns:

- 1. The *identity* of the unitig U_i that contains **x**
- 2. The <u>offset</u> (position) into U_i where x occurs

Achieved (in Pufferfish) by:

- 1. Storing the unitig sequences
- 2. Building a minimum perfect hash function over k-mers in an input reference collection

tile2occ(U_i) returns:

1. A list of tuples of (*reference, position, orientation*) triplets of the unitig U_i that contains x

Achieved (in Pufferfish) by:

1. Storing a "flattened" inverted map of unitig ids to lists of occurrences (i.e. **utab()** on the right).

We will not discuss the details in this presentation, but will need to know the inputs and outputs of k2tile(...), and that it is O(1).

 R_0

 R_1

Why does indexing this way help? Compression through "factorization"

 $(2 \times 4) + (2 \times 5) + (3 \times 8) + (2 \times 6) + (3 \times 4) + (3 \times 5) = 2(4+5+6) + 3(8+4+5)$

Why does indexing this way help? **Compression through "factorization"**

potentially much better than a naive hash?

The cdBG removes redundancy by providing an extra level of indirection

Redundant sequences (repeats) are implicitly collapsed. Why is this

Factors out long repeat (k-mer pos always same)

→
$$R_1$$
- l_1 , R_2 - l_1 , ..., R_M - l_1
- → 0
- → 1
- → 2
:
- → l_1 -k

What's the benefit of this "framework"?

- maps (k2tile(x), and tile2occ(U_i)) leads to a modular indexing framework.
- MPHF, FM-index, r-index or something else for k2tile(x).
- and maps (replacing Pufferfish's k2tile() with sshash [Pibiri 2022]).

• Recognizing the minimal API for such an index as the composition of these two

• We can mix-and-match different data structures for each of the maps (e.g. use a

• Allowed us to *immediately* capitalize on recent advancements in k-mer indexing

What's the benefit of this "framework"?

- maps (k2tile(x), and tile2occ(U_i)) leads to a modular indexing framework.
- MPHF, FM-index, r-index or something else for k2tile(x).
- and maps (replacing Pufferfish's k2tile() with sshash [Pibiri 2022]).

Basic idea implemented in *piscem* <a>:

```
GOMBINE-lab / piscem Public
```

https://github.com/COMBINE-lab/piscem

Recognizing the minimal API for such an index as the composition of these two

• We can mix-and-match different data structures for each of the maps (e.g. use a

• Allowed us to *immediately* capitalize on recent advancements in k-mer indexing

Immediate benefits of piscem

speed) hash-based (very fast) ccDBG index.

	Pufferfish	Pufferfish (sparse)	piscem
Human "splici" index	7.7G	5.2G	2.5G
GRCh38	15.2G	10.1G	4.7G
7 human	36G	28G	12G

- Speed is *fast* but somewhat (30-40%) slower than pufferfish.
- Can map 638M reads (10x PBMC 10k dataset) in 18 minutes using 16 threads.

Prior to piscem, pufferfish has been a state-of-the-art (in terms of size &

Improving the tile2occ() map (the bottleneck)

- sshash makes a great **k2tile()** map, but as we index more sequence, the **tile2occ()** map becomes the clear bottleneck.
- k2tile() grows in the amount of "unique" sequence, while tile2occ() grows (at least) in the total reference length.
- How can we compress tile2occ() and keep access fast?

A new scheme for representing tilings

Spectrum Preserving Tilings Enable Sparse and Modular Reference Indexing

Jason Fan¹, Jamshed Khan¹, Giulio Ermanno Pibiri^{2,3}, and Rob Patro^{1(\boxtimes)}

¹ University of Maryland, College Park, MD 20440, USA jasonfan@umd.edu, {jamshed,rob}@cs.umd.edu ² Ca' Foscari University of Venice, Venice, Italy giulioermanno.pibiri@unive.it ³ ISTI-CNR, Pisa, Italy

https://doi.org/10.1007/978-3-031-29119-7 2

3.1 Definition

Given a k-mer length k and an input reference collection of genomic sequences $\mathcal{R} = \{R_1, \dots, R_N\}$, a spectrum preserving tiling (SPT) for \mathcal{R} is $\Gamma := (\mathcal{U}, \mathcal{T}, \mathcal{S}, \mathcal{W}, \mathcal{L})$:

- that each k-mer in \mathcal{R} occurs in some $U_i \in \mathcal{R}$. Each string $U_i \in \mathcal{U}$ is called a *tile*.
- We term each $T_{n.m}$ a tile-occurrence.

- sequence.

A valid SPT must satisfy the spectrum preserving tiling property, that every reference sequence R_n can be reconstructed by gluing together substrings of tiles at offsets W_n with lengths L_n :

$$R_n = T_{n,1}[w_{n,1}:w_{n,1}+l_{n,1}] \oplus \ldots \oplus T_{n,M_n}[w_{n,M_n}:w_{n,M_n}+l_{n,M_n}].$$

• Tiles: $\mathcal{U} = \{U_1, \dots, U_F\}$. The set of *tiles* is a spectrum preserving string set, i.e., a set of strings such

• Tiling sequences: $\mathcal{T} = \{T_1, \dots, T_N\}$ where each T_n corresponds to each reference $R_n \in \mathcal{R}$. Each tiling sequence is an ordered sequence of tiles $T_n = [T_{n,1}, \dots, T_{n,M_n}]$, of length M_n , with each $T_{n,m} = U_i \in \mathcal{U}$.

• Tile-occurrence lengths: $\mathcal{L} = \{L_1, \dots, L_N\}$, where each $L_n = [l_{n,1}, \dots, l_{n,M_n}]$ is a sequence of lengths. Tile-occurrence offsets: \$\mathcal{W} = {W_1, ..., W_N}\$, where each \$W_n = [w_{n,1}, ..., w_{n,M_n}]\$ is an integer-sequence.
Tile-occurrence start positions: \$\mathcal{S} = {S_1, ..., S_N}\$, where each \$S_n = [s_{n,1}, ..., s_{n,M_n}]\$ is an integer-sequence.

A new scheme for representing tilings

Spectrum Preserving Tilings Enable Sparse and Modular Reference Indexing

Jason Fan¹, Jamshed Khan¹, Giulio Ermanno Pibiri^{2,3}, and Rob Patro^{1(\boxtimes)}

¹ University of Maryland, College Park, MD 20440, USA jasonfan@umd.edu, {jamshed,rob}@cs.umd.edu ² Ca' Foscari University of Venice, Venice, Italy giulioermanno.pibiri@unive.it ³ ISTI-CNR, Pisa, Italy

The full details are not important for the purpose of this lecture, but there is a fully fleshed out theory for these composable indices based on the novel idea of **Spectrum Preserving Tilings (SPTs).**

It is very general. You need not use unitigs, but could use e.g. simplitigs, eulertigs, etc.

https://doi.org/10.1007/978-3-031-29119-7_2

ctab needs **log(...)** bits per occurrence for each unitig.

ctab needs **log(...)** bits per occurrence for each unitig.

ctab needs **log(...)** bits per occurrence for each unitig.

Can we store log(...) bits per occurrence only for some unitigs?

ctab needs **log(...)** bits per occurrence for each unitig.

Can we store log(...) bits per occurrence only for some unitigs?

samples a subset of unique unitigs to compress utab:

ctab needs log(...) bits per occurrence for each unitig.

Can we store log(...) bits per occurrence only for some unitigs?

samples a subset of unique unitigs to compress utab:

ctab needs log(...) bits per occurrence for each unitig.

Can we store log(...) bits per occurrence only for some unitigs?

samples a subset of unique unitigs to compress utab:

ctab needs log(...) bits per occurrence for each unitig.

Can we store log(...) bits per occurrence only for some unitigs?

samples a subset of unique unitigs to compress utab:

ctab needs log(...) bits per occurrence for each unitig.

Can we store log(...) bits per occurrence only for some unitigs?

samples a subset of unique unitigs to compress utab:

ctab needs log(...) bits per occurrence for each unitig.

Can we store log(...) bits per occurrence only for some unitigs?

samples a subset of unique unitigs to compress utab:

ctab needs **log(...)** bits per occurrence for each unitig.

Can we store log(...) bits per occurrence only for some unitigs?

Yes!

Sampled – log(L) bits per occ.

samples a subset of unique unitigs to compress utab:

ctab needs **log(...)** bits per occurrence for each unitig.

Can we store log(...) bits per occurrence only for some unitigs?

Yes!

Sampled – log(L) bits per occ.

Not-sampled - \sim 7 bits per occ.

For non-sampled unitigs, store predecessor nucleotides

(a) Sample positions of unitig-occurrences

Need to store the predecessors & successors, because each backward step needs to determine which occurrence of the predecessor unitig is being traversed.

Efficient access to specific predecessor / successor nucleotides via rank and select over Σ in O(1) time using the wavelet matrix [Claude et al. 2013]

(b) Store predecessor and successor nucleotides

Querying non-sampled unitigs

- Traverse backward toward the closest sampled unitig •

Inferring the position of the non-sampled unitig is trivial to infer (sampled position + distance walked)

practically slow — much engineering goes into making this practically fast.

This sampling scheme lets us shrink tile2occ() We can *explicitly* trade off size for speed

Dataset	Sampling strategy	Index size (GB)	100K reads (secs)
7 Humans	None	16.8	139.4
	Random $(s = 3, t = .05)$	7.8 (2.15×)	$8092.8~(58.04 \times)$
	Random (s = 3, t = .25)	9.9 (1.70×)	$1466.2 (10.52 \times)$
4000 E. coli	None	7.7	12.6
	Random $(s = 3, t = .05)$	3.7 (2.08×)	$15.6~(1.24 \times)$
	$\left \text{Random } (s = 3, t = .25) \right $	4.7 (1.63×)	$15.5 (1.23 \times)$
30K Human gut	None	86.3	178.7
	Random $(s = 3, t = .05)$	45.6 (1.90×)	570.2~(3.19 imes)
	Random $(s = 3, t = .25)$	54.4 (1.59×)	576.9~(3.23 imes)
	Random $(s = 6, t = .05)$	$34.6 (2.50 \times)$	$644.8~(3.61 \times)$
	Random (s = 6, t = .25)	45.6 (1.90×)	$646.1~(3.56 \times)$

Smaller indices make indexing larger sequence possible

And save

Dataset	u2occ with pufferfish2	k2u with SSHash	New index	Original pufferfish index			
7 Human	9.9	3.2	13.1	28.0			
4000 E. coli	3.7	7.3	11.0	26.1			
30K Human gut	34.6	22.0	55.6	131.7			
WS EC2 instances pricing: tps://instances.vantage.sh/aws/ec2/x2gd.xlarge 64 GiB of RAM – 243 USD per month tps://instances.vantage.sh/aws/ec2/x2gd.2xlarge 128 GiB of RAM – 478 USD per month tps://instances.vantage.sh/aws/ec2/x2gd.4xlarge							

A

ht ht ht 256 GiB of RAM – 975 USD per month

Conclusions

- The reference indexing problem admits a modular solutions made up of two distinct abstract data types: a **dictionary** \mathcal{D} (k2tile) and an **inverted index** \mathscr{L} (tile2occ).
- While substantial work has been done on how to represent \mathcal{D} , relatively little work has been done on how to represent \mathscr{L} (especially for genomic references).
- The spectrum preserving tiling formalism, and reasoning about reference tilings opens up the possibility of sampling tiling occurrences.
- Viewing the reference index as the modular composition of 2 distinct data structures, and making the necessary API explicit, opens the door to constructing a whole *class* of reference indexing data structures.

Some open problems More in the paper

- 1.Can we use, or at least mix-and-match sampling with traditional compression techniques for inverted lists (Elias-Fans, interpolative encoding, etc.)?
- 2.We currently sample entire *unitigs* (i.e. all occurrences) what if we sample specific occurrences instead?
- 3.What is the best set of tiles? We used unitigs, but simplitigs, eulertigs, etc. are possible. It is not obvious that longer "tigs" \rightarrow smaller representations.
- 4.We considered only exact / lossless indexing, but what could we achieve if we allow approximation? E.g. do not index all tiles or allow some false-positive results.

