
Improving indexing of the
(compacted) colored de

Bruijn graph

Problem & Motivation
K-mer based reference indexing

• Given a collection of reference sequences , where each is a string over the DNA
alphabet

• We want an index over that can efficiently answer the following queries:

• Membership: Does x appear in ?

• Count: How many times does x appear in ?

• Color: In which references does x appear?

• Locate: Where in does x appear?

• Applications : This type of index is useful for many foundational problems like read mapping/alignment/
lightweight alignment/pseudoalignment. Solving it quickly and in small space can help in bottleneck steps in
taxonomic assignment, metagenomics, bulk and single-cell RNA-seq processing, etc.

ℛ = {R1, …, Rm} Ri
Σ = {A, C, G, T}

ℐ ℛ

ℛ

ℛ

ℛ

Increasing  
power / specificity 

of query.

Problem & Motivation
More formally

• Want: Map from distinct k-mers to their reference
positions (i.e. for k-mer x):

• Where is a set of m references,
and is a list of pairs of reference id i, and a set of
occurrences of k-mer x on Ri

• Queries:

• Membership: Does x appear in ?

• Count: How many times does x appear in ?

• Color: In which references does x appear?

• Locate: Where in does x appear?

x → Lx = {(i, {pij}), x ∈ Ri}

ℛ = {R1, …, Rm}
Lx

ℛ

ℛ

ℛ

Increasing  
power / specificity 

of query.

Presence/absence in map

Length of Lx in the index

The set {i ∣ x ∈ Ri}

The set {(i, {pij}) ∣ x ∈ Ri}

ACGGTT..GC
x

𝒟

ℒ

Lx

Problem & Motivation
More formally

• Want: Map from distinct k-mers to their reference
positions (i.e. for k-mer x):

• Where is a set of m references,
and is a list of pairs of reference id i, and a set of
occurrences of k-mer x on Ri

• Queries:

• Membership: Does x appear in ?

• Count: How many times does x appear in ?

• Color: In which references does x appear?

• Locate: Where in does x appear?

x → Lx = {(i, {pij}), x ∈ Ri}

ℛ = {R1, …, Rm}
Lx

ℛ

ℛ

ℛ

Increasing  
power / specificity 

of query.

Presence/absence in map

Length of Lx in the index

The set {i ∣ x ∈ Ri}

The set {(i, {pij}) ∣ x ∈ Ri}

ACGGTT..GC 𝒟

ℒ

Lx

Will focus on this as the most powerful / difficult query

x

A general structure for k-mer indexing
• Many k-mer based indexes are incarnations/adaptations of this general

indexing framework, 𝒟 + L:
- deBGA [Liu et al. 2016]

- Sequence Bloom Trees [Solomon et al. 2016]

- kallisto [Bray et al. 2016]

- BIGSI [Bradley et al. 2017]

- Rainbowfish [Almodaresi et al. 2017]

- Mantis [Pandey et al. 2018]

- Pufferfish [Almodaresi et al. 2018]

- SeqOthello [Yu et al. 2018]

- COBS [Bingmann et al. 2019]

- Reindeer [Marchet et al. 2020]

- Raptor [Seiler et al. 2021]

- Metagraph [Karasikov et al. 2022]

- NIQKI [Agret et al. 2022]

- Pufferfish2 [Fan et al. 2022]

- etc.

ACGGTT..GC 𝒟

ℒ

Lx

x

Problem & Motivation
The fundamental query — mrp()

We want to find the position of any k-mer (e.g. x) in an index over thousands or hundreds of thousands  
of known reference sequences.

For example, when comparing observed sequences from the microbiome to known bacterial strains and species.

The (compacted colored) de Bruijn graph
for reference indexing

Using the (compacted colored) de Bruijn graph for indexing
Goal: compactly represent input reference sequences

AAATGAG
AAATGACG
CCTGACG
CCTGAG

Constructing a de Bruijn Graph
1.Break references into k-mer set (e.g. k=3)

2.Join k-mers with (k-1) overlap

Compacted de Bruijn Graph
Merge non-branching paths in dBG into unitigs

Key properties:
Unitigs tile reference sequences

Any k-mer occurs exactly once, in one unique unitig

𝑅0:
𝑅1:
𝑅2:
𝑅3:

𝑼𝒊

The reference index as a composition of 2 maps

k2tile(x) returns:

1. The identity of the unitig that contains x
2. The offset (position) into where x occurs 

Achieved (in Pufferfish) by:

1. Storing the unitig sequences

2. Building a minimum perfect hash function over

k-mers in an input reference collection

𝑈𝑖
𝑈𝑖

AAATG
TGA

GAG

GACGCTGG

Compacted dBG (cdBG)

offset

k2tile(x: Kmer) -> (i, offset)

𝑈𝑖

We will not discuss the details in this presentation, but will need to know the inputs and outputs of k2tile(…), and that it is O(1).

tile2occ(Ui) returns:

1. A list of tuples of  

(reference, position, orientation) triplets of
the unitig that contains x 𝑈𝑖

tile2occ(Ui: Unitig id) -> [(Ri, offsetij, oriij)…]

Achieved (in Pufferfish) by:

1. Storing a “flattened” inverted map of unitig ids

to lists of occurrences (i.e. utab() on the right).

Why does indexing this way help?
Compression through “factorization”

(2 x 4) + (2 x 5) + (3 x 8) + (2 x 6) + (3 x 4) + (3 x 5) = 2 (4+5+6) + 3 (8+4+5)

Why does indexing this way help?
Compression through “factorization”

• Redundant sequences (repeats) are implicitly collapsed. Why is this
potentially much better than a naive hash?

k-mer

repeat

R1 R2 R3

R1-l1, R2 - l1, …, RM - l1
R1-l1+1, R2 - l1+1, …, RM - l1+1
R1-l1+2, R2 - l1+2, …, RM - l1+2

R1-k, R2 - k, …, RM - k
……

…

0
1
2

l1-k

List all occurrences individually Factors out long repeat (k-mer pos always same)

The cdBG removes redundancy by providing an extra level of indirection

R1-l1, R2 - l1, …, RM - l1

R4

What’s the benefit of this “framework”?
• Recognizing the minimal API for such an index as the composition of these two

maps (k2tile(x), and tile2occ(Ui)) leads to a modular indexing framework.
• We can mix-and-match different data structures for each of the maps (e.g. use a

MPHF, FM-index, r-index or something else for k2tile(x)).

• Allowed us to immediately capitalize on recent advancements in k-mer indexing

and maps (replacing Pufferfish’s k2tile() with sshash [Pibiri 2022]).

What’s the benefit of this “framework”?
• Recognizing the minimal API for such an index as the composition of these two

maps (k2tile(x), and tile2occ(Ui)) leads to a modular indexing framework.
• We can mix-and-match different data structures for each of the maps (e.g. use a

MPHF, FM-index, r-index or something else for k2tile(x)).

• Allowed us to immediately capitalize on recent advancements in k-mer indexing

and maps (replacing Pufferfish’s k2tile() with sshash [Pibiri 2022]).

Basic idea implemented in piscem 🐟:

https://github.com/COMBINE-lab/piscem

Immediate benefits of piscem
• Prior to piscem, pufferfish has been a state-of-the-art (in terms of size &

speed) hash-based (very fast) ccDBG index.

Pufferfish Pufferfish (sparse) piscem

Human “splici”
index 7.7G 5.2G 2.5G

GRCh38 15.2G 10.1G 4.7G

7 human 36G 28G 12G

• Speed is fast but somewhat (30-40%) slower than pufferfish.

• Can map 638M reads (10x PBMC 10k dataset) in 18 minutes using 16 threads.

Improving the tile2occ() map  
(the bottleneck)

One of these things is not like the other
1 human genome

7 human genomes

• sshash makes a great k2tile() map, but as we index more sequence, the
tile2occ() map becomes the clear bottleneck.

• k2tile() grows in the amount of “unique” sequence, while tile2occ() grows (at
least) in the total reference length.

• How can we compress tile2occ() and keep access fast?

A new scheme for representing tilings

https://doi.org/10.1007/978-3-031-29119-7_2

A new scheme for representing tilings

The full details are not important for the purpose of this lecture, but there is a fully
fleshed out theory for these composable indices based on the novel idea of
Spectrum Preserving Tilings (SPTs).

It is very general. You need not use unitigs, but could use e.g. simplitigs,  
eulertigs, etc.

https://doi.org/10.1007/978-3-031-29119-7_2

Focusing on tile2ref()
How do we compress the bottleneck component?

𝑅0

𝑅1

𝑅2

𝑅3

Focusing on tile2ref()
How do we compress the bottleneck component?

ctab needs log(…) bits per
occurrence for each unitig.𝑅0

𝑅1

𝑅2

𝑅3

Focusing on tile2ref()
How do we compress the bottleneck component?

ctab needs log(…) bits per
occurrence for each unitig.𝑅0

𝑅1

𝑅2

𝑅3

Focusing on tile2ref()
How do we compress the bottleneck component?

ctab needs log(…) bits per
occurrence for each unitig.

Can we store log(…) bits per
occurrence only for some unitigs?

𝑅0

𝑅1

𝑅2

𝑅3

Focusing on tile2ref()
How do we compress the bottleneck component?

ctab needs log(…) bits per
occurrence for each unitig.

Can we store log(…) bits per
occurrence only for some unitigs?

Yes!

𝑅0

𝑅1

𝑅2

𝑅3

𝑅0

𝑅1

𝑅2

𝑅3

samples a subset of unique unitigs to compress utab:
ctab needs log(…) bits per
occurrence for each unitig.

Can we store log(…) bits per
occurrence only for some unitigs?

Yes!

20

Focusing on tile2ref()
How do we compress the bottleneck component?

𝑅0

𝑅1

𝑅2

𝑅3

samples a subset of unique unitigs to compress utab:
ctab needs log(…) bits per
occurrence for each unitig.

Can we store log(…) bits per
occurrence only for some unitigs?

Yes!

20

Focusing on tile2ref()
How do we compress the bottleneck component?

𝑅0

𝑅1

𝑅2

𝑅3

samples a subset of unique unitigs to compress utab:
ctab needs log(…) bits per
occurrence for each unitig.

Can we store log(…) bits per
occurrence only for some unitigs?

Yes!

20

Focusing on tile2ref()
How do we compress the bottleneck component?

𝑅0

𝑅1

𝑅2

𝑅3

samples a subset of unique unitigs to compress utab:
ctab needs log(…) bits per
occurrence for each unitig.

Can we store log(…) bits per
occurrence only for some unitigs?

Yes!

20

Focusing on tile2ref()
How do we compress the bottleneck component?

𝑅0

𝑅1

𝑅2

𝑅3

samples a subset of unique unitigs to compress utab:
ctab needs log(…) bits per
occurrence for each unitig.

Can we store log(…) bits per
occurrence only for some unitigs?

Yes!

20

Focusing on tile2ref()
How do we compress the bottleneck component?

𝑅0

𝑅1

𝑅2

𝑅3

samples a subset of unique unitigs to compress utab:
ctab needs log(…) bits per
occurrence for each unitig.

Can we store log(…) bits per
occurrence only for some unitigs?

Yes!

Sampled – log(L) bits per occ.

20

Focusing on tile2ref()
How do we compress the bottleneck component?

𝑅0

𝑅1

𝑅2

𝑅3

Not-sampled – ~7 bits per occ.

samples a subset of unique unitigs to compress utab:
ctab needs log(…) bits per
occurrence for each unitig.

Can we store log(…) bits per
occurrence only for some unitigs?

Yes!

Sampled – log(L) bits per occ.

20

Focusing on tile2ref()
How do we compress the bottleneck component?

For non-sampled unitigs, store predecessor nucleotides

Efficient access to specific predecessor / successor nucleotides via rank and
select over Σ in O(1) time using the wavelet matrix [Claude et al. 2013]

Need to store the predecessors & successors, because each backward step
needs to determine which occurrence of the predecessor unitig is being
traversed.

Querying non-sampled unitigs
• Traverse backward toward the closest sampled unitig

• Inferring the position of the non-sampled unitig is trivial to infer (sampled position + distance walked)

• Note: A naive implementation of this idea is asymptotically optimal, but
practically slow — much engineering goes into making this practically fast.

This sampling scheme lets us shrink tile2occ()
We can explicitly trade off size for speed

Smaller indices make indexing larger sequence possible
And save 💵

AWS EC2 instances pricing:
https://instances.vantage.sh/aws/ec2/x2gd.xlarge

64 GiB of RAM — 243 USD per month
https://instances.vantage.sh/aws/ec2/x2gd.2xlarge

128 GiB of RAM — 478 USD per month
https://instances.vantage.sh/aws/ec2/x2gd.4xlarge

256 GiB of RAM — 975 USD per month

Conclusions

• The reference indexing problem admits a modular solutions made up of two distinct abstract
data types: a dictionary 𝒟 (k2tile) and an inverted index (tile2occ).

• While substantial work has been done on how to represent 𝒟, relatively little work has been

done on how to represent (especially for genomic references).

• The spectrum preserving tiling formalism, and reasoning about reference tilings opens up

the possibility of sampling tiling occurrences.

• Viewing the reference index as the modular composition of 2 distinct data structures, and

making the necessary API explicit, opens the door to constructing a whole class of reference
indexing data structures.

ℒ

ℒ

Some open problems

1.Can we use, or at least mix-and-match sampling with traditional compression techniques for
inverted lists (Elias-Fans, interpolative encoding, etc.)? 

2.We currently sample entire unitigs (i.e. all occurrences) — what if we sample specific
occurrences instead? 

3.What is the best set of tiles? We used unitigs, but simplitigs, eulertigs, etc. are possible. It is not
obvious that longer “tigs” → smaller representations. 

4.We considered only exact / lossless indexing, but what could we achieve if we allow
approximation? E.g. do not index all tiles or allow some false-positive results.

More in the paper

